
Disk I/O Performance of 
Kata Containers

Bharat Kunwar

Who am I?

- Live in Bristol, UK
- Work at StackHPC, a Bristol based HPC/Cloud consultancy
- Core reviewer for OpenStack Magnum, a project for deploying and managing

Kubernetes cluster lifecycle which integrates with other OpenStack resources
(e.g. Identity, Block Storage, LBaaS). Ussuri release supports:

- Kubernetes v1.18.x
- Fedora CoreOS 31 via podman
- Containerd (consequently Kata)
- Nodegroups
- Rolling upgrades

What are Kata Containers ?

- Like containers but really lightweight VMs
- Has roots in Intel Clear Containers and Hyper runV technology
- Integrates seamlessly with Docker 🐳 and Kubernetes ☸
- Often mentioned alongside gVisor, which aims to solve a similar problem by

filtering and redirecting system calls to a separate user space kernel (which
as a result suffers from runtime performance penalties).

Why does this matter?

- We may want to run untrusted workloads with the isolation gained by not
sharing the OS kernel with the host (although this assumption is challenged in
a recent survey of virtual machines and containers [1].)

- However, if the work is I/O bound, as HPC workloads often are, we may want
to take into consideration the trade-off between the security isolation
gained versus bare metal/runC container I/O performance.

- Kata will only run on a machine configured to support nested virtualisation.
- egrep --color 'vmx|svm' /proc/cpuinfo

- Kata requires at least a Westmere processor architecture

Considerations: hardware

Considerations: virtio-9p vs virtio-fs

- virtio-9p is based on existing network protocol that is not optimized for
virtualization use cases

- virtio-fs (available since Kata v1.7.0) takes advantage of the virtual machine’s
co-location with the hypervisor

- Experimental support for DAX where file contents can be mapped into a memory window on
the host, allowing the guest to directly access data from the host page cache

- Reduced memory footprint as guest cache is bypassed
- No communication necessary, (hopefully) improving I/O performance

- Kata containers are OCI conformant which means that a Container Runtime
Interface (CRI) that supports external runtime, e.g. CRI-O and containerd
which use runC by default can instead use kata-qemu (since Kata 1.6.0
which uses 9pfs[2]) or kata-qemu-virtiofs runtimes (since Kata 1.9.0 but
previously packaged into kata-nemu since Kata 1.7.0).

- From Kubernetes 1.14+ onwards, the RuntimeClass feature flag has been
promoted to beta, therefore enabled by default. Consequently the setup is
relatively straightforward (for kata-qemu using 9pfs at least).

Deploying Kata

- Clone Kata packaging repo:
git clone https://github.com/kata-containers/packaging -b stable-1.9
cd packaging

- Register RBAC, runtime classes and deploy Kata binaries:
kubectl apply -f kata-deploy/kata-rbac.yaml
kubectl apply -f kata-deploy/k8s-1.14/kata-qemu-runtimeClass.yaml
kubectl apply -f kata-deploy/k8s-1.14/kata-qemu-virtiofs-runtimeClass.yaml
kubectl apply -f kata-deploy/kata-deploy.yaml

- Add one of the following to your Pod spec:
runtimeClassName: kata-qemu
runtimeClassName: kata-qemu-virtiofs
Omit runtimeClassName for runC

Deploying Kata

https://github.com/kata-containers/packaging

Our test apparatus

- 1 master, 2 workers, all with 32 processing units and 125G RAM each
- BeeGFS 🐝 based NVME storage backend over 100Gbps Infiniband

- Configured using our Ansible role available on Galaxy: stackhpc.beegfs
- Kubernetes v1.16.0 with containerd v1.2.6

- Configured using Kubespray: https://github.com/kubernetes-sigs/kubespray since containerd
support in Magnum is work in progress

- Kata v1.9.1
- Deployed from Kubernetes templates: https://github.com/kata-containers/packaging

https://github.com/kubernetes-sigs/kubespray
https://github.com/kata-containers/packaging

Challenges: BeeGFS 💔 virtio-fs v0.3

- There was a mismatch in syscalls instantiated by virtiofsd (v0.2 shipped with
Kata v1.7.0 -> v0.3 shipped with Kata v1.9.1) to the underlying BeeGFS
filesystem leading to -EINVAL error, symptom: FIO jobs never manage to run to
completion.

- Additionally, we get an -EIO failure because of this check inside fs/dax.c
where inode->i_blkbits resolves to 19 and PAGE_SHIFT resolves to 12:

if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
return -EIO;

- Additionally, virtiofsd (v0.3 shipped with Kata v1.9.1) was incompatible with
the host OS kernel version (3.10.0-1062).

Solution: thanks stefanha & vgoyal 🙌

- Patch virtio-fs-dev branch of https://gitlab.com/virtio-fs/linux.git with this
patch: https://gist.github.com/brtknr/5fe95642a67b8f28139db953413b91b0
and build the kernel

- Build qemu-system-x86_64 and virtiofsd binaries from virtio-fs-
dev branch of https://gitlab.com/virtio-fs/qemu.git for ensuring compatibility
with host kernel (3.10.0-1062)

- Point configuration-virtiofs.toml file inside /usr/local/bin/
containerd-shim-kata-qemu-virtiofs-v2 to a config file targeting
these custom kata binaries.

https://gitlab.com/virtio-fs/linux.git
https://gist.github.com/brtknr/5fe95642a67b8f28139db953413b91b0
https://gitlab.com/virtio-fs/qemu.git

configuration-virtiofs.toml:
14,15d13

< path = "/opt/kata/bin/qemu-virtiofs-system-x86_64"

< kernel = "/opt/kata/share/kata-containers/vmlinuz-virtiofs.container"

16a15,16

> path = "/mnt/storage-nvme/kata/qemu/x86_64-softmmu/qemu-system-x86_64"

> kernel = "/mnt/storage-nvme/kata/linux/arch/x86/boot/bzImage"

105c105

< virtio_fs_daemon = "/opt/kata/bin/virtiofsd"

> virtio_fs_daemon = "/mnt/storage-nvme/kata/qemu/virtiofsd"

108c108

< virtio_fs_cache_size = 1024

> virtio_fs_cache_size = 0

131c131

< virtio_fs_cache = "always"

> virtio_fs_cache = "auto"

https://gist.github.com/brtknr/84aa4370c2e7c4ff2b00e30e677aefad

https://gist.github.com/brtknr/84aa4370c2e7c4ff2b00e30e677aefad

fio_jobfile.fio

[global] [fio-job]

; Do not use fallocate. Not all the filesystem types we can test (such as
9p) support
; this - which can then generate errors in the JSON datastream.
fallocate=none
; Limit runtime
runtime=30
; Ensure that jobs run for a specified time limit, not I/O quantity
time_based=1
; To model application load at greater scale, each test client will
maintain
; a number of concurrent I/Os.
ioengine=libaio
iodepth=8
; Note: these two settings are mutually exclusive
; (and may not apply for Windows test clients)
direct=1
buffered=0
; Settings from Kata container repo
invalidate=1
ramp_time=0
; Set a number of workers on this client
thread=0
numjobs=4
group_reporting=1
; Each file for each job thread is this size
filesize=32g
size=32g
filename_format=$jobnum.dat

rw=${FIO_RW}

fio fio_jobfile.fio --directory=/beegfs/ --output-format=json+ --blocksize=65536 --output=65536.json

60 I/O scenarios (5x3x4)

Scenario Number of clients Disk I/O pattern (FIO_RW)

bare metal (3.10.0-1062) 1 (sequential) read

runC containers (3.10.0-1062) 8 randread

kata-qemu (4.19.75) 64 (sequential) write

kata-virtiofs (5.3.0-rc3+ with custom modifications, virtio_fs_cache_size =
0) randwrite

kata-virtiofs (5.3.0-rc3+ with custom modifications, virtio_fs_cache_size =
1024) with DAX

Results - Visualising an FIO run

Results - Read Bandwidth

Results - Read Commit Latency

Results - Write Bandwidth

Results - Write Commit Latency

- Generally:
- Not much discrepancy between baremetal and runC cases

- Sequential Write:
- virtio-fs-dax appears to outperform baremetal?

- Random write:
- virtio-fs-dax only slightly worse than baremetal

- Sequential Read:
- virtio-fs-dax close to bare metal with fewer clients, outperforms 9p and

virtio-fs without DAX
- Random Write:

- 9p > virtio-fs and virtio-fs-dax

Observations

Conclusions

- virtio-9p works but considerable performance sacrifice and doesn’t appear to
scale particularly well

- virtio-fs with DAX brings Kata containers much closer to bare metal/runC for
read, randread and write scenarios, reservations for randwrite

- … although we may need to wait a little longer for the customisations to the
kernel to be readily available if you are planning to use this with parallel file
systems backends like BeeGFS/Ceph.

Special thanks

- Graham Whaley (gwhaley)
- Stefan Hajnoczi (stefanha)
- Vivek Goyal (vgoyal)

Thank you for your attention!

References

1. The Ideal Versus the Real: Revisiting the History of Virtual Machines and
Containers - https://arxiv.org/abs/1904.12226

2. Grave Robbers from Outer Space: Using 9P2000 Under Linux - https://
www.usenix.org/legacy/events/usenix05/tech/freenix/hensbergen.html

3. virtio-fs - https://virtio-fs.gitlab.io/
4. Our blog article - https://www.stackhpc.com/kata-io-1.html

https://arxiv.org/abs/1904.12226
https://www.usenix.org/legacy/events/usenix05/tech/freenix/hensbergen.html
https://www.usenix.org/legacy/events/usenix05/tech/freenix/hensbergen.html
https://www.usenix.org/legacy/events/usenix05/tech/freenix/hensbergen.html
https://virtio-fs.gitlab.io/
https://www.stackhpc.com/kata-io-1.html

